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ABSTRACT

Some useful properties of the majority binomial pro-

bability function

n

f(p,n) = (,)pX(lp)ln-x

n+lx =- - n = 1,3,5,...,

0 < p < 1

are derived. An important result is the determination of

a function which bounds f(p,n) and yet is easy to evaluate

numerically. Thus, a means is provided of determining the

bounding values of the majority binomial probability func-

tion for probability values much smaller than those listed

in available tables.
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USEFUL PROPERTIES OF THE

MAJORITY BINOMIAL PROBABILITY FUNCTION

INTRODUCTION

During the writer's research on the synthesis of reliable automata

from unreliable constituents, the majority binomial probability function,

f(p,n) = (n)pX(1 -p)nx n = 1,3,5, (

n+l 0 < p < ,

arose. This function is a generalization of the probability function

corresponding to n = 3, utilized by Von Neumann and others in conjunc-,

tion with majority organs. The function, f(p,n), is a special case of

the well known cumulative binomial probability distribution function for

which at least two1 , 2 different volumes of tables have been published.

In these tables the smallest entry value of the function is 10- 7 and

the smallest entry value of p is 10- 2 . The tables are not adequate

since values of p and f(p,n) much smaller than 1072 and 10- 7 are of

interest in automata theory and in certain other applications. Thus

a problem exists of evaluating the function without a great amount of

calculative labor. Approximating f(p,n) with a continuous function

(such as the error function) does not relieve the problem, since, even

if the approximating conditions are satisfied, the tabulated values in

the tables of the approximating continuous functions do not cover the

range of interest.
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An explicit solution of (1) for n in terms of f and p is desirable,

since for most problems involving the majority binomial, the value of p

is given and the problem is to determine the value of n required to ob-

tain a certain value of f. However, even if n were a continuous varia-

ble, it is evident that it would not be possible to obtain an exact ex-

plicit solution for n.

The purposes of this paper are to derive for ready reference useful

properties of the majority binomial function and to find functions which

bound f(p,n) that are easy to evaluate numerically and from which a use-

ful approximation to the explicit solution for n can be obtained.

DEFINITIONS AND ASSUMPTIONS

The well known binomial probability distribution is defined as

E(n,r,p) Q °()pX(1-p)n-x , 0 p- l1, n = 1,2,3,... (2)

r <n
x--r

where (n) =

x xI(n-x)!

This function gives the probability of r or more occurrences of an

event in n independent trials where p is the probability of occurrence

of the event in one trial.

The following relationships are not difficult to probe, but are as-

1,2
sumed to be true since they appear in the literature.

E(n+l,r,p) = pE(n,r-l,p) + (l-p)E(n,r,p) (3)

E(n,r,p) = 1 - E(n,n-r+l,l-p) (4)

dE r(n)pr-l(lp)n-r
dp r
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The majority binomial probability function is defined by (1) as

f(p,n) (n)px( 1 .P)n-x 0 :5 p 1, n 1,3,5,....

_n+l

X 2

which is just E(n,r,p) with the constraints that r n= + and n is odd.

It follows directly from the definitions and assumptions that

f(p,n) = 1 - f(l-p,n) , f(j,n) =J (6)

and that f(p,n) increases if p increases.

THEOREMS n+l'

Theorem I: f(p,n+2) =f(p,n) + (ni pl -jJ [2p-1]

Proof: By (3)

'E(n+l,r,p) pE(n,r-l,p) + (l-p)E(n,r,p)

From this recurrence relation it follows that

E(n+l,r+l,p) = pE(n,r,p) + (l-p)E(n,r+l,p) (7)

and

-E(n+2,r+l,p) = px(n+l-,r,p) + (l-p)E(n+l,r+l,p) (8)

Substituting (3) and (7) into (8) we have after some manipulation
= 2 2

E(n+2,r+l,p) =pE(n,r-l,p) + 2p(l-p)E(n,r,p) + (1-p) E(n,r+l,p) (9)

Notethat E(n,r-l,p) (r-lPr (1.)nr) + E(n,r,p)

and thati -

'E(n,r+l,p) =E(n,r,p) _ ()( 1 )r.

Substituting into (9) and simplifying, we have

E~+,~~)2 n r-l ,,n-r+l (,P2(np(_~E~+,~~) E(n,r,p) +- P (r-l) rlp 1)(f)i(~n

Note tht(r)= i (n). Substituting again, we haveNot tha (r 1) a r
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E(n+2,r+l,p) = E(n,r,p) + (n)Pr(l P)n- r - (lp)2]

when r = r - n +1 and n is odd, r 1 and by definition2 n-r+ n+l

E(n+2,r1 +l,p) = f(p,n+2) = f(p,n) + (n p(lp)] 2 [2p-l]. (10).

Theorem II: f(p,n) increases if n increases for any given value of

p in the interval - < p < 1, and f(p,n) decreases if n increases for any

given value of p in the interval 0 < p < 2

Proof: Since n is an odd integer by definition, the smallest

increment in any value of n is two. From theorem I we have

n+l

f(p,n+2) = f(p,n) + (nnl) [p(l-p)]2 [2p-l] n 1,3,5,...

therefore n+l

f(p,n+2)- f(p,n) ('n __l[p(l-p)12 [2p-lJ

The sign of this difference is independent of n. This difference

is positive when (2p-1) > 0, which requires p > 1, and it is negative

when (2p-l) < 0, which requires p <j'. It follows then, that

f(p,n+2) > f(p,n) if j < p < 1

f(p,n+2) < f(p,n) if 0 < p <

Since this is true for any odd n, the theorem is proved.

Theorem III: f(p,n) > p if j < p < 1 and

f(p,n) < p if 0 < p <- for n 3,5,7,...

Proof: By theorem II f(p,n) is an increasing function of n if
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j < p < 1 and f(p,n) is a decreasing function of n if 0 < p < j and

f(pj) = J. Therefore, the theorem is proved if f(p,3) > p for

j < p < 1 and f(p,3) < p for 0 < p <j.

By definition

f(p,3) = ()pX(lp)3-= 3p 2 - 2p3

x=2

If f(p,3) = p, then

2 33p -2p 3 - p =0

which has solutions, p = 0, p = jp = 1.

df(p.3) = 6p(l-p), which is > 1 at p = j

dp

Since f(p,3) = p in the interval 0 < p < 1 only at p = j and the slope

is > 1 at p T, f(p,3) > p for < p < 1 and f(p,3) < p for 0 < p< ,

which proves the theorem.

2 2
Theorem V: 3p - 2p 5 Rn < 4p /p ,

.0< p<
where R f(p.n+2)

n - f(p,n) n = 1,3,5,...

Proof: By (10)

R 1 (p)pr(1P)n-r(1P) (1-2p) n +l
Rn =1 f(p,n) r 2

Define
L(p,n) ()r( 1 )n-r()(2p)

f(p,n)

when 0 < p <1, l-2p > 0

Therefore L(p,n) > 0

Dividing numerator and denominator of L(p,n) by (n)pr(l-p)n-r we have



L - (l-P)(l-2p) where a = r(n-r)l
x xl(n-x)I

x-raxy and y = -p

x '- r

Define
n

s > axy x -r , let k = x-r, then

x-r

n -r

S. a r + ky

k 0

Note that a =1 andr+k+1 n- r
r a+k r+k+l

By definition r =- therefore

a
-r+ k + 1 n - 1 - 2k

ar+k n +2k+3

Hence a 1 if k 0,1,2,r+k •2'"

It is well-known that = 12

kO0

Since a 1 and < 1 if 0 < p <, it is evident that

s <- 1 - Therefore L > (1-p) =l =-2p)2 , and R 1 -2L<4p-4p21 - y(1 -22p 
,- an

1 - 2p

The minimum value of n, by definition, is n 1. If n = 1, then

s 1, and s > 1 if n > 1, therefore s > 1.
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Hence
_______2p 2

L l-s(i-p) (1-p) (1-2p) and R n 1 - L k 3p -2p

which completes the proof of the theorem.

Theorem V:
n-i n-i

2 2 2~n 2
p(3p-2p f (p n)<)(p4

Proof: By definition

R = f(p,n+2) and f(p,l) p,
n f(p,n)

from which it follows that

f(p,3) = R f(p,i) = R p

f(p,5) = R3f(p,3) = R3Rlp

n-i

f(p,n) R p ,n 3,,..
k n n2k3,,,.

By theorem IV

3p -2p 2 R < 4p -4p 2 n 1,3,5,....n

therefore

2 2 n-i
3p -2p -5R n k< 4p -4p k 1..

n =3,5,7....

and
n-i

n-i 2 n-i
22 2 2

(3p-2p) 25 1T R n-k< (4-4p
k=1 n2
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Hence
n-i n-1

2 2 2 2
p(3p-2p ) 2 f(p,n) < (4p-4p )

n-1 n+l n+l

2 2 /n n P P~
Theorem VI: (i-p) p +1 < f(pn) < n_ 2(- '-n- l-2p '

Proof: Let r = n+1 then!, 2

n n

f(p,n) = , (n)pX(p)n-x = (p)n. (n)() p

x=r x r

Let k = x-r, then

, n-r nr

f(p,n) (-)n 1  (rk)-Pr+k (l)n-rpr(n) r +k(l )k

k 0 k=O

where a_(k) It was shown in theorem IV that1, wh r r +k (n)
,.)

' n-r

(k )k 1 -p therefore

k=0

n+1
",P~- 1--p2p

f(p,n) < (l-p)nP 1r((l-2p)k: '-12

Hence n+l

S a l n t f (p , n) s e r i ei 2
2--1 1 - 2p

Since all the terms in the f(p,n) series are positive
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n+l n-i

f(p,n) > (n p 2 ( 2-p)

which completes the proof of the theorem.

n+l

Ifnf fl.pf,_P\1
Theorem VII: If u = 1 -2p is taken to be the value

( 2T 1

of f(p,n), the error, e = f -f, is less than - and the relative
u i- p

e
error, er = - is less than

U i -p

Proof: By theorem VI fL -< f < fu where

n-i n+l
SfL = (1-p) P (2n+l ,

21

therefore

e =f f < f f

u u L

and

f i-p or fL i u

I u

Hence
Pfu

f - f > e.
U L -p

It follows directly that

e e < _1_r fu l-p

Theorem VIII: nL - n n, where

(1) n. is the minimum value of n = 1,3,5,... for which f(p,n) _ fo

f < 1and fo is any prescribed probability, 0 < f0 < p <2
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(2) nL is the smallest odd integer which exceeds or is equal to

2 log 0-
p

n'= 2 1 (ii)
log(3p-2p2)

(3) n is the smallest odd integer-which exceeds or is equal to

fo

2 log --
P

n= + 1 (12)
log(4p-4p 

)

n-l

Proof: By theorem V f(p,n) < p(4p-4p
2 ) 2

u-1

Let fo P(P-42 2 ,and solve for n' Then

2 log P

n'u =+i
" u log(4p-4p2 )

by definition, and 4p - < 1 if 0 < p <j ;

n nu-_ 1 nu-__l

therefore f. Z P (4P-4p2) 2 and f(p,nU) < p(4P_4p2 2 < fo'

hence f(p,'nu) < fo .

This proves that n n is sufficient to guarantee that f(p,n) < fo$
?U.

therefore n0 < nu.

By theorem V

n-!
f(p,n) 2 p(3p-2p



n' _

Let fo = p(3p-2p 2) 2 and solve for n'L and we have

fo

2 log 0

n1= 2+1

log(3p-2p)

It follows from the definitions of nL and n'L that n - 2 < n'L ; there-

fore since. 3P - 2p 2 < 1,

nL -2-1

fo < P(3p-2p2 2

By theorem V

nL - 2 - 1

f(p,nL 2) > p(3p-2p2) 2 hence f(p,n_ 2 ) >fo

By theorem II f(p,n) decreases as n increases; therefore if

f(pnO) :5 fo, no must be greater than nL2 . However, the smallest in-

crement in n0 is 2; therefore a necessary condition for f(p,nO) _< f0 is

n 0._k nL, which completes the proof of the theorem.

GRAPHICAL EVALUATION OF nO

In order to simplify calculations, let fo = 1 0
-B  or equivalently,

B -log f0  Substituting into (11) and (12) we have

n -2B -2 log p + 1 (13)

L  log(3p-2p )

and

* ± -2B -2 log p
n' og(1p(1p), ./, :, u log(4P_4p2
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where log 2 < -log p < B < .

For any given value of p, n'L and n' are functions of B only, inu

which case it is evident that (13) and (14) are equations of straight

lines. The plot of (13) or (14) is then completely determined by evai-

uation at any two values of B.

An efficient procedure for graphical evaluation of no, assuming a

fixed value of p, 0 < p < , is as follows:

Let n' be the axis of ordinates and B the axis of abscissas. Eval-

uate n' at any two convenient values of B and pass a straight lineu

through the resulting two points, remembering that points which do not

satisfy the condition, log 2 < -log p < B < o, have no practical signifi-

cance. Project values of the ordinates of the straight line, which are

not odd integers up to the first value of the ordinate which is an odd

integer. The resulting step function gives an upper bound of n0 for any

value of B. Apply the same procedure to n'L to obtaina graph of lower

bounds. This procedure is illustrated in Fig. 1. It should be noted

that for p 10- 3 , the upper and lower bounds on nO coincide for most

values of B < 25 and never differ by more than two. Therefore if n is
u

taken to be the value of n and p.5lO - 3 , f0 10-25 then f(p,n) < f

and n is at most two greater than nO. If greater economy in the deter-

mination of n0 is desired, then for the values of B of interest for

which n and n do not coincide, theorem VII can be used in most casesu L

to determine if nL would suffice.

IL
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Fig. 1. Graphical evaluation ofn0
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